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The aim of this note is to fill in a gap in our previous paper in this journal.
Precisely, we give a new proof of the following theorem: let (0, A, +) be a _-finite
measure space with +(0)>0, 0<p<+�, and Y a separable subspace of a Banach
space X. Then Y is proximinal in X iff L p(+, Y ) is proximinal in L p(+, X ). � 1998

Academic Press

1. INTRODUCTION

Because of our negligence and misuse of Theorem 1$ of [1, p. 230], there
is a gap in the process of the proof of Theorem 3.4 in our previous paper
[2]. However, Theorem 3.4 of [2] itself is correct. Along the idea of the
proof of Theorem 3.4 used in [2], we only need to slightly modify the pro-
cess of the proof of Theorem 3.4 of [2] to complete its proof by making
use of Theorem 5.10 of [3] instead of Theorem 1$ of [1].

Let (0, A, +) be a measure space, (B, & }&) a Banach space, and
(0, A� , +̂) the Lebesgue extension of (0, A, +) (for the notation of a
Lebesgue extension, see [4, pp. 142�143]). Ordinarily, a B-valued strongly
measurable function on (0, A, +) means it is the limit almost everywhere
of a sequence of A-measurable simple B-valued functions on (0, A, +)
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[5]. One can easily see that the notation of strongly measurable functions
coincides with that of +-measurable functions of [4] when (0, A, +) is
_-finite.

In [2], to avoid the difficulty of discussing measurability, we introduced
the concept of strongly A-measurable functions. A so-called B-valued
strongly A-measurable function V on (0, A, +) is the pointwise limit of a
sequence [.n] of A-measurable simple B-valued functions on 0, namely,
&V(|)&.n(|)& � 0 for any | # 0. Clearly, V is strongly A-measurable iff
V is A-measurable and the range of V is a separable subset of B [6, p. 48].
The concept of strongly A-measurable functions on (0, A, +) depends
only on the measurable space (0, A) and is independent of the measure +.

Lemma III 6.9 of [4, p. 147] shows that when (0, A, +) is _-finite,
V: (0, A, +) � B is +-measurable iff V is A� -measurable and +-essentially
separably valued, and hence also iff V is +-equivalent to a strongly
A� -measurable function (and thus +-equivalent to a strongly A-measurable
function).

Throughout this note, let (0, A, +) be a _-finite measure space with
+(0)>0, (X, & }&) be a Banach space. Denote by L0(A, X) the linear space
of all X-valued strongly A-measurable functions on (0, A, +); by
(0, A� , +̂) the Lebesgue extension of (0, A, +) (and hence (0, A� , +̂) is a
complete _-finite measure space); by L0(A� , X ) the linear space of all
X-valued strongly A� -measurable functions on 0; by M0(+, X ) the linear
space of all X-valued +-measurable functions on 0; by L(A, X ) (resp.,
L(A� , X )) the linear space of all the +-equivalence classes of elements in
L0(A, X ) (resp., L0(A� , X )); and by M(+, X ) the linear space of all the
+-equivalence classes of elements in M 0(+, X ).

2. MAIN RESULTS AND THEIR PROOFS

First, let us note that although L0(A, X ), L0(A� , X ), and M0(+, X ) may
be, essentially, different spaces from each other (when X is separable,
M0(+, X )=L0(A� , X )), however, as spaces of +-equivalence classes of the
related functions, L(A, X ), L(A� , X ), and M(+, X ) can be essentially iden-
tified.

Theorem 1. Let Y be a separable and proximinal subspace of X. Then
L(A, Y ) is pointwise proximinal in L(A, X ).

Proof. For any fixed element p in L(A, X), let p0 # L0(A, X ) be any
selected representative of p. Define a mapping f: 0_Y � R1 by f (|, y)=
&p0(|)& y&&dist( p0(|), Y ) for any (|, y) # 0_Y. Then f is a Carathe� odory-
type mapping, i.e., f ( } , y) is A-measurable for each y # Y, and f (|, } ) is
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continuous for each | # 0. Thus by Lemma 7.5 of [3, p. 877], f is A�B(Y )-
measurable; of course, f is also A� �B(Y)-measurable.

Now define a multifunction F: 0 � 20 by F(|)=[ y # Y | &p0(|)& y&=
dist( p0(|), Y )] for any | # 0. Since Y is separable and proximinal, Y is
closed, and hence also a complete separable Banach space. GrF=[(|, y) #
0_Y | y # F(|)]=f &1([0]) # A�B(Y )/A� �B(Y), since A� is a Suslin
family and Y is a Suslin space, and by Theorem 5.10 of [3, p. 873], F has
a Castaing representation. F is closed, and thus there exists a countable set
[ p0

n | n # N] in L0(A� , Y) such that [ p0
n(|) | n # N]=F(|) for each | # 0.

This shows dist( p0(|), Y )=&p0(|)& p0
n(|)& for any n # N and any | # 0.

Since each p0
n must be +-equivalent to an element q0

n in L0(A, Y), we also
have dist( p0(|), Y )=&p0(|)&q0

n(|)& a.e. for each n # N, and hence
&p0(|)&q0

n(|)&�&p0(|)&q0(|)& a.e. for each q0 # L0(A, Y ) and each
n # N. Let qn be the +-equivalence class of q0

n for each n # N. Then [qn]/
L(A, Y ) and &p&qn&�&p&q& for any n # N and any q # L(A, Y ), which
shows each qn is just a pointwise best approximant of p in L(A, Y ).

This completes the proof of Theorem 1.

Remark 1. In [2], since functions that are equal a.e. are identified, take
(0, A, +)=(S, 7, +) of [2] there. Then L(S, X ) of [2] is just L(A, X )
here, and hence Theorem 1 here is just Theorem 3.4 of [2].

Corollary 1 [2, Theorem 3.5, p. 319]. Let Y be a separable subspace
of X, and p be a positive real number. Then L p(+, Y ) is proximinal in
L p(+, X ) iff Y is proximinal in X.

Proof. This follows immediately from Theorem 1 here and Theorems
3.2 and 3.3 of [2].
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