A Note on Pointwise Best Approximation

Guo Tie-Xin*

Department of Mathematics, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China

and

You Zhao-Yong

Center for Applied Mathematics, Xi'an Jiatong University, Xi'an, Shaan Xi, 710049, People's Republic of China

Communicated by Will Light

Received December 10, 1996; accepted May 1, 1997

The aim of this note is to fill in a gap in our previous paper in this journal. Precisely, we give a new proof of the following theorem: let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space with $\mu(\Omega) > 0$, 0 , and*Y*a separable subspace of a Banach space*X*. Then*Y*is proximinal in*X* $iff <math>L^p(\mu, Y)$ is proximinal in $L^p(\mu, X)$. © 1998 Academic Press

1. INTRODUCTION

Because of our negligence and misuse of Theorem 1' of [1, p. 230], there is a gap in the process of the proof of Theorem 3.4 in our previous paper [2]. However, Theorem 3.4 of [2] itself is correct. Along the idea of the proof of Theorem 3.4 used in [2], we only need to slightly modify the process of the proof of Theorem 3.4 of [2] to complete its proof by making use of Theorem 5.10 of [3] instead of Theorem 1' of [1].

Let $(\Omega, \mathscr{A}, \mu)$ be a measure space, $(B, \|\cdot\|)$ a Banach space, and $(\Omega, \widehat{\mathscr{A}}, \widehat{\mu})$ the Lebesgue extension of $(\Omega, \mathscr{A}, \mu)$ (for the notation of a Lebesgue extension, see [4, pp. 142–143]). Ordinarily, a *B*-valued strongly measurable function on $(\Omega, \mathscr{A}, \mu)$ means it is the limit almost everywhere of a sequence of \mathscr{A} -measurable simple *B*-valued functions on $(\Omega, \mathscr{A}, \mu)$

* Supported by the National Natural Science Foundation of China.

[5]. One can easily see that the notation of strongly measurable functions coincides with that of μ -measurable functions of [4] when $(\Omega, \mathcal{A}, \mu)$ is σ -finite.

In [2], to avoid the difficulty of discussing measurability, we introduced the concept of strongly \mathscr{A} -measurable functions. A so-called *B*-valued strongly \mathscr{A} -measurable function *V* on $(\Omega, \mathscr{A}, \mu)$ is the pointwise limit of a sequence $\{\varphi_n\}$ of \mathscr{A} -measurable simple *B*-valued functions on Ω , namely, $\|V(\omega) - \varphi_n(\omega)\| \to 0$ for any $\omega \in \Omega$. Clearly, *V* is strongly \mathscr{A} -measurable iff *V* is \mathscr{A} -measurable and the range of *V* is a separable subset of *B* [6, p. 48]. The concept of strongly \mathscr{A} -measurable functions on $(\Omega, \mathscr{A}, \mu)$ depends only on the measurable space (Ω, \mathscr{A}) and is independent of the measure μ .

Lemma III 6.9 of [4, p. 147] shows that when $(\Omega, \mathcal{A}, \mu)$ is σ -finite, V: $(\Omega, \mathcal{A}, \mu) \rightarrow B$ is μ -measurable iff V is $\hat{\mathcal{A}}$ -measurable and μ -essentially separably valued, and hence also iff V is μ -equivalent to a strongly $\hat{\mathcal{A}}$ -measurable function (and thus μ -equivalent to a strongly \mathcal{A} -measurable function).

Throughout this note, let $(\Omega, \mathscr{A}, \mu)$ be a σ -finite measure space with $\mu(\Omega) > 0, (X, \|\cdot\|)$ be a Banach space. Denote by $L^0(\mathscr{A}, X)$ the linear space of all X-valued strongly \mathscr{A} -measurable functions on $(\Omega, \mathscr{A}, \mu)$; by $(\Omega, \mathscr{\hat{A}}, \hat{\mu})$ the Lebesgue extension of $(\Omega, \mathscr{A}, \mu)$ (and hence $(\Omega, \mathscr{\hat{A}}, \hat{\mu})$ is a complete σ -finite measure space); by $L^0(\mathscr{\hat{A}}, X)$ the linear space of all X-valued strongly $\mathscr{\hat{A}}$ -measurable functions on Ω ; by $M^0(\mu, X)$ the linear space of all X-valued μ -measurable functions on Ω ; by $L(\mathscr{A}, X)$ (resp., $L(\mathscr{\hat{A}}, X))$ the linear space of all the μ -equivalence classes of elements in $L^0(\mathscr{A}, X)$ (resp., $L^0(\mathscr{\hat{A}}, X)$); and by $M(\mu, X)$ the linear space of all the μ -equivalence classes of elements in $M^0(\mu, X)$.

2. MAIN RESULTS AND THEIR PROOFS

First, let us note that although $L^0(\mathscr{A}, X)$, $L^0(\widehat{\mathscr{A}}, X)$, and $M^0(\mu, X)$ may be, essentially, different spaces from each other (when X is separable, $M^0(\mu, X) = L^0(\widehat{\mathscr{A}}, X)$), however, as spaces of μ -equivalence classes of the related functions, $L(\mathscr{A}, X)$, $L(\widehat{\mathscr{A}}, X)$, and $M(\mu, X)$ can be essentially identified.

THEOREM 1. Let Y be a separable and proximinal subspace of X. Then $L(\mathcal{A}, Y)$ is pointwise proximinal in $L(\mathcal{A}, X)$.

Proof. For any fixed element p in $L(\mathscr{A}, X)$, let $p^0 \in L^0(\mathscr{A}, X)$ be any selected representative of p. Define a mapping $f: \Omega \times Y \to R^1$ by $f(\omega, y) = ||p^0(\omega) - y|| - \text{dist}(p^0(\omega), Y)$ for any $(\omega, y) \in \Omega \times Y$. Then f is a Carathéodory-type mapping, i.e., $f(\cdot, y)$ is \mathscr{A} -measurable for each $y \in Y$, and $f(\omega, \cdot)$ is

continuous for each $\omega \in \Omega$. Thus by Lemma 7.5 of [3, p. 877], *f* is $\mathscr{A} \otimes \mathscr{B}(Y)$ -measurable; of course, *f* is also $\widehat{\mathscr{A}} \otimes \mathscr{B}(Y)$ -measurable.

Now define a multifunction $F: \Omega \to 2^{\Omega}$ by $F(\omega) = \{y \in Y \mid \|p^0(\omega) - y\| = \text{dist}(p^0(\omega), Y)\}$ for any $\omega \in \Omega$. Since Y is separable and proximinal, Y is closed, and hence also a complete separable Banach space. Gr $F = \{(\omega, y) \in \Omega \times Y \mid y \in F(\omega)\} = f^{-1}(\{0\}) \in \mathcal{A} \otimes \mathcal{B}(Y) \subset \hat{\mathcal{A}} \otimes \mathcal{B}(Y)$, since $\hat{\mathcal{A}}$ is a Suslin family and Y is a Suslin space, and by Theorem 5.10 of [3, p. 873], F has a Castaing representation. F is closed, and thus there exists a countable set $\{p_n^0 \mid n \in N\}$ in $L^0(\hat{\mathcal{A}}, Y)$ such that $\{p_n^0(\omega) \mid n \in N\} = F(\omega)$ for each $\omega \in \Omega$. This shows dist $(p^0(\omega), Y) = \|p^0(\omega) - p_n^0(\omega)\|$ for any $n \in N$ and any $\omega \in \Omega$. Since each p_n^0 must be μ -equivalent to an element q_n^0 in $L^0(\mathcal{A}, Y)$, we also have dist $(p^0(\omega), Y) = \|p^0(\omega) - q_n^0(\omega)\|$ a.e. for each $n \in N$, and hence $\|p^0(\omega) - q_n^0(\omega)\| \leq \|p^0(\omega) - q^0(\omega)\|$ a.e. for each $n \in N$. Then $\{q_n\} \subset L(\mathcal{A}, Y)$ and $\|p - q_n\| \leq \|p - q\|$ for any $n \in N$ and any $q \in L(\mathcal{A}, Y)$, which shows each q_n is just a pointwise best approximant of p in $L(\mathcal{A}, Y)$.

This completes the proof of Theorem 1.

Remark 1. In [2], since functions that are equal a.e. are identified, take $(\Omega, \mathcal{A}, \mu) = (S, \Sigma, \mu)$ of [2] there. Then L(S, X) of [2] is just $L(\mathcal{A}, X)$ here, and hence Theorem 1 here is just Theorem 3.4 of [2].

COROLLARY 1 [2, Theorem 3.5, p. 319]. Let Y be a separable subspace of X, and p be a positive real number. Then $L^{p}(\mu, Y)$ is proximinal in $L^{p}(\mu, X)$ iff Y is proximinal in X.

Proof. This follows immediately from Theorem 1 here and Theorems 3.2 and 3.3 of [2].

ACKNOWLEDGMENTS

The authors thank Professor Mendoza for pointing out the gap in the original proof of Theorem 3.4 of [2] and Professor W. A. Light for kindly providing his paper [5] and his valuable suggestion on this note.

REFERENCES

- C. J. Himmelberg and F. S. Van Vleck, Multifunctions on abstract measurable spaces and applications to stochastic decision theory, *Ann. Mat. Pura Appl.* 101 (1974), 229–236.
- 2. You Zhao-Yong and Guo Tie-Xin, Pointwise best approximation in the space of strongly measurable functions with applications to best approximation in $L^{p}(\mu, X)$, J. Approx. Theory **78** (1994), 314–320.

- D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15, No. 5 (1977), 859–903.
- 4. N. Dunford and J. T. Schwartz, "Linear Operators, Part I," Interscience, New York, 1958.
- 5. W. A. Light, Proximality in Lp(µ, Y), Rocky Mountain J. Math. 19, No. 1 (1989), 251-259.
- Wang Zi-Kun, An introduction to random functional analysis, *Math. Adv. Sinica* 5, No. 1 (1962), 45–71.